Fabrication of NaYF4:Yb,Er Nanoprobes for Cell Imaging Directly by Using the Method of Hydrion Rivalry Aided by Ultrasonic

نویسندگان

  • Zhihua Li
  • Haixia Miao
  • Ying Fu
  • Yuxiang Liu
  • Ran Zhang
  • Bo Tang
چکیده

A novel method of fabricating water-soluble bio-probes with ultra-small size such as NaYF4:Yb,Er (18 nm), NaGdF4:Yb,Er (8 nm), CaF2:Yb,Er (10 nm), PbS (7 nm), and ZnS (12 nm) has been developed to provide for the solubility switch of nanoparticles from oil-soluble to water-soluble in terms of hydrion rivalry aided by ultrasonic. Using NaYF4:Yb,Er (18 nm) as an example, we evaluate the properties of as-prepared water-soluble nanoparticles (NPs) by using thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ) testing, and 1H nuclear magnetic resonance (1HNMR). The measured ζ value shows that the newly prepared hydrophilic NaYF4:Yb,Er NPs are the positively charged particles. Acting as reactive electrophilic moiety, the freshly prepared hydrophilic NaYF4:Yb,Er NPs have carried out the coupling with amino acids and fluorescence labeling and imaging of HeLa cells directly. Experiments indicate that the method of hydrion rivalry aided by ultrasonic provides a simple and novel opportunity to transform hydrophobic NPs into hydrophilic NPs with good reactivity, which can be imaging some specific biological targets directly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing upconversion luminescence of NaYF4:Yb/Er nanocrystals by Mo(3+) doping and their application in bioimaging.

Enhancement of upconversion luminescence is imperative for the applications of upconversion nanocrystals (UCNs). In this work, we investigated the upconversion luminescence enhancement of NaYF4:Yb/Er by Mo(3+) ion doping. It was found that the upconversion luminescence intensities of the green and red emissions of UCNs co-doped with 10 mol% Mo(3+) ions were enhanced by 6 and 8 times, respective...

متن کامل

Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) doping in NaYF4:Yb,Er nanocrystals.

Red upconversion luminescence (UCL) is selectively enhanced by about 7 times via Fe(3+) codoping into a NaYF4:Yb,Er nanocrystalline lattice. The maximum red-to-green ratio (R/G) as well as the overall integrated UCL intensity features at an Fe(3+) content of 20 mol%. The size and phase of nanocrystals are simultaneously manipulated via Fe(3+) doping with various concentrations by a facile hydro...

متن کامل

Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals

Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) codoped with the rare earth ions Gd and Er/Yb/Eu are synthesized and dispersed in water. An efficient upand downconverted photoluminescence from the rare-earth ions (Er and Yb or Eu) doped into fluoride nanomatrix allows optical imaging modality for the ...

متن کامل

Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.

This work focuses on the design of composite photoanodes with dual-mode luminescent function as well as the effects of luminescent phosphors on the photoelectric properties of dye-sensitized solar cells. Specifically, hexagonal phase NaYF4:Yb(3+)/Er(3+) microcrystals were prepared by a hydrothermal method and added to the TiO2 photoanodes of dye-sensitized solar cells. The results indicated tha...

متن کامل

Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth.

Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016